java中,HashMap底层数据结构是什么?

2021-03-01 19:45发布

12条回答
十七
2楼 · 2021-03-02 09:18

Hashmap原理详解

存储put方法

查询get方法

Key value

Hashmap不安全,设计扩容

ConcurrentHashMap线程安全

2. 存储原理

Jdk7 数组(查询快,增删慢)+链表(增删快,查询慢)

Jdk8 数组+链表+红黑树(节点>8

 

数组:key value hash(哈希值) next(指针指向下一个链表节点)


image.png

希希
3楼 · 2021-03-02 11:13

Hashmap原理详解

存储put方法

查询get方法

Key value

Hashmap不安全,设计扩容

ConcurrentHashMap线程安全

2. 存储原理

Jdk7 数组(查询快,增删慢)+链表(增删快,查询慢)

Jdk8 数组+链表+红黑树(节点>8

 

数组:key value hash(哈希值) next(指针指向下一个链表节点)


三岁奶猫
4楼 · 2021-03-02 13:24

HashMap也是我们使用非常多的Collection,它是基于哈希表的 Map 接口的实现,以key-value的形式存在。在HashMap中,key-value总是会当做一个整体来处理,系统会根据hash算法来来计算key-value的存储位置,我们总是可以通过key快速地存、取value。

JDK7 数组+链表

JDK8数组+链表+红黑树。当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能

image.png

梵梵
6楼 · 2021-03-04 10:11

HashMap也是我们使用非常多的Collection,它是基于哈希表的 Map 接口的实现,以key-value的形式存在。在HashMap中,key-value总是会当做一个整体来处理,系统会根据hash算法来来计算key-value的存储位置,我们总是可以通过key快速地存、取value。

py大白
7楼 · 2021-03-04 16:10

Hashmap原理详解

存储put方法

查询get方法

Key value

Hashmap不安全,设计扩容

ConcurrentHashMap线程安全

2. 存储原理

Jdk7 数组(查询快,增删慢)+链表(增删快,查询慢)

Jdk8 数组+链表+红黑树(节点>8

 

数组:key value hash(哈希值) next(指针指向下一个链表节点)


小小收藏家
8楼 · 2021-03-05 13:45

HashMap也是我们使用非常多的Collection,它是基于哈希表的 Map 接口的实现,以key-value的形式存在。在HashMap中,key-value总是会当做一个整体来处理,系统会根据hash算法来来计算key-value的存储位置,我们总是可以通过key快速地存、取value。

我的网名不再改
9楼 · 2021-03-05 22:57

Hashmap是java面试中经常遇到的面试题,大部分都会问其底层原理与实现,本人也是被这道题问惨了,为了能够温故而知新,特地写了这个博客,以便时时学习。

Hash结构

HashMap根据名称可知,其实现方法与Hash表有密切关系。在讨论哈希表之前,我们先大概了解下其他数据结构在新增,查找等基础操作执行性能。

数组:采用一段连续的存储单元来存储数据。对于指定下标的查找,时间复杂度为O(1);通过给定值进行查找,需要遍历数组,逐一比对给定关键字和数组元素,时间复杂度为O(n),当然,对于有序数组,则可采用二分查找,插值查找,斐波那契查找等方式,可将查找复杂度提高为O(logn);对于一般的插入删除操作,涉及到数组元素的移动,其平均复杂度也为O(n)

线性链表:对于链表的新增,删除等操作(在找到指定操作位置后),仅需处理结点间的引用即可,时间复杂度为O(1),而查找操作需要遍历链表逐一进行比对,复杂度为O(n)

二叉树:对一棵相对平衡的有序二叉树,对其进行插入,查找,删除等操作,平均复杂度均为O(logn)。

哈希表:相比上述几种数据结构,在哈希表中进行添加,删除,查找等操作,性能十分之高,不考虑哈希冲突的情况下,仅需一次定位即可完成,时间复杂度为O(1),接下来我们就来看看哈希表是如何实现达到惊艳的常数阶O(1)的。

我们知道,数据结构的物理存储结构只有两种:顺序存储结构和链式存储结构(像栈,队列,树,图等是从逻辑结构去抽象的,映射到内存中,也这两种物理组织形式),而在上面我们提到过,在数组中根据下标查找某个元素,一次定位就可以达到,哈希表利用了这种特性,哈希表的主干就是数组。
  比如我们要新增或查找某个元素,我们通过把当前元素的关键字 通过某个函数映射到数组中的某个位置,通过数组下标一次定位就可完成操作。
   location = hash(关键字)
其中,hash函数设计的优劣直接影响整体的性能。
 
哈希冲突
哈希算法存在一个缺点就是哈希冲突。例如,我们进行数据存储时,我们通过对关键字进行hash时得到的地址已经存储过数据了,这时就会出现哈希冲突。因此,哈希函数的设计至关重要,好的哈希函数会尽可能地保证 计算简单和散列地址分布均匀。但是,我们需要清楚的是,数组是一块连续的固定长度的内存空间,再好的哈希函数也不能保证得到的存储地址绝对不发生冲突。那么哈希冲突如何解决呢?哈希冲突的解决方案有多种:开放定址法(发生冲突,继续寻找下一块未被占用的存储地址),再散列函数法,链地址法,而HashMap即是采用了链地址法,也就是数组+链表的方式

HashMap实现原理

HashMap的主干是一个Entry数组。Entry是HashMap的基本组成单元,每一个Entry包含一个key-value键值对。

//HashMap的主干数组,可以看到就是一个Entry数组,初始值为空数组{},主干数组的长度一定是2的次幂,至于为什么这么做,后面会有详细分析。
transient Entry[] table = (Entry[]) EMPTY_TABLE;12

Entry是HashMap中的一个静态内部类。代码如下

static class Entry implements Map.Entry {
        final K key;
        V value;
        Entry next;//存储指向下一个Entry的引用,单链表结构
        int hash;//对key的hashcode值进行hash运算后得到的值,存储在Entry,避免重复计算

        /**
         * Creates new entry.
         */
        Entry(int h, K k, V v, Entry n) {
            value = v;
            next = n;
            key = k;
            hash = h;
        }123456789101112131415

所以,HashMap的整体结构如下
在这里插入图片描述
简单来说,HashMap由数组+链表组成的,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的,如果定位到的数组位置不含链表(当前entry的next指向null),那么对于查找,添加等操作很快,仅需一次寻址即可;如果定位到的数组包含链表,对于添加操作,其时间复杂度为O(n),首先遍历链表,存在即覆盖,否则新增;对于查找操作来讲,仍需遍历链表,然后通过key对象的equals方法逐一比对查找。所以,性能考虑,HashMap中的链表出现越少,性能才会越好。

其他几个重要字段:

//实际存储的key-value键值对的个数
transient int size;
//阈值,当table == {}时,该值为初始容量(初始容量默认为16);当table被填充了,也就是为table分配内存空间后,threshold一般为 capacity*loadFactory。HashMap在进行扩容时需要参考threshold,后面会详细谈到
int threshold;
//负载因子,代表了table的填充度有多少,默认是0.75
final float loadFactor;
//用于快速失败,由于HashMap非线程安全,在对HashMap进行迭代时,如果期间其他线程的参与导致HashMap的结构发生变化了(比如put,remove等操作),需要抛出异常ConcurrentModificationException
transient int modCount;12345678

HashMap有4个构造器,其他构造器如果用户没有传入initialCapacity 和loadFactor这两个参数,会使用默认值,initialCapacity默认为16,loadFactory默认为0.75。下面给出一个构造函数示例:

public HashMap(int initialCapacity, float loadFactor) {
     //此处对传入的初始容量进行校验,最大不能超过MAXIMUM_CAPACITY = 1<<30> MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);

        this.loadFactor = loadFactor;
        threshold = initialCapacity;
     
        init();//init方法在HashMap中没有实际实现,不过在其子类如 linkedHashMap中就会有对应实现
    }12345678910111213141516

从上面这段代码我们可以看出,在常规构造器中,没有为数组table分配内存空间(有一个入参为指定Map的构造器例外),而是在执行put操作的时候才真正构建table数组

HashMap-put方法

public V put(K key, V value) {
        //如果table数组为空数组{},进行数组填充(为table分配实际内存空间),入参为threshold,此时threshold为initialCapacity 默认是1<<4 xss=removed int hash = hash(key);//对key的hashcode进一步计算,确保散列均匀 int i = indexFor(hash, table.length);//获取在table中的实际位置> e = table[i]; e != null; e = e.next) {
        //如果该对应数据已存在,执行覆盖操作。用新value替换旧value,并返回旧value
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }
        modCount++;//保证并发访问时,若HashMap内部结构发生变化,快速响应失败
        addEntry(hash, key, value, i);//新增一个entry
        return null;
    }123456789101112131415161718192021222324
private void inflateTable(int toSize) {
        int capacity = roundUpToPowerOf2(toSize);//capacity一定是2的次幂
        threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);//此处为threshold赋值,取capacity*loadFactor和MAXIMUM_CAPACITY+1的最小值,capaticy一定不会超过MAXIMUM_CAPACITY,除非loadFactor大于1
        table = new Entry[capacity];
        initHashSeedAsNeeded(capacity);
    }123456

inflateTable这个方法用于为主干数组table在内存中分配存储空间,通过roundUpToPowerOf2(toSize)可以确保capacity为大于或等于toSize的最接近toSize的二次幂,比如toSize=13,则capacity=16;to_size=16,capacity=16;to_size=17,capacity=32。

private static int roundUpToPowerOf2(int number) {
        // assert number >= 0 : "number must be non-negative";
        return number >= MAXIMUM_CAPACITY
                ? MAXIMUM_CAPACITY
                : (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;
    }123456

roundUpToPowerOf2中的这段处理使得数组长度一定为2的次幂,Integer.highestOneBit是用来获取最左边的bit(其他bit位为0)所代表的数值。

hash函数

//这是一个神奇的函数,用了很多的异或,移位等运算,对key的hashcode进一步进行计算以及二进制位的调整等来保证最终获取的存储位置尽量分布均匀
final int hash(Object k) {
        int h = hashSeed;
        if (0 != h && k instanceof String) {
            return sun.misc.Hashing.stringHash32((String) k);
        }

        h ^= k.hashCode();

        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
    }123456789101112

以上hash函数计算出的值,通过indexFor进一步处理来获取实际的存储位置

/**
     * 返回数组下标
     */
    static int indexFor(int h, int length) {
        return h & (length-1);
    }123456

h&(length-1)保证获取的index一定在数组范围内,举个例子,默认容量16,length-1=15,h=18,转换成二进制计算为

1 0 0 1 0
& 0 1 1 1 1
__________________
0 0 0 1 0 = 2

最终计算出的index=2。有些版本的对于此处的计算会使用 取模运算,也能保证index一定在数组范围内,不过位运算对计算机来说,性能更高一些(HashMap中有大量位运算),所以最终存储位置的确定流程是这样的:
在这里插入图片描述
添加entry

void addEntry(int hash, K key, V value, int bucketIndex) {
        if ((size >= threshold) && (null != table[bucketIndex])) {
            resize(2 * table.length);//当size超过临界阈值threshold,并且即将发生哈希冲突时进行扩容
            hash = (null != key) ? hash(key) : 0;
            bucketIndex = indexFor(hash, table.length);
        }

        createEntry(hash, key, value, bucketIndex);
    }123456789

通过以上代码能够得知,当发生哈希冲突并且size大于阈值的时候,需要进行数组扩容,扩容时,需要新建一个长度为之前数组2倍的新的数组,然后将当前的Entry数组中的元素全部传输过去,扩容后的新数组长度为之前的2倍,所以扩容相对来说是个耗资源的操作。

为何HashMap的数组长度一定是2的次幂?

HashMap扩容方法resize:

void resize(int newCapacity) {
        Entry[] oldTable = table;
        int oldCapacity = oldTable.length;
        if (oldCapacity == MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return;
        }

        Entry[] newTable = new Entry[newCapacity];
        transfer(newTable, initHashSeedAsNeeded(newCapacity));
        table = newTable;
        threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
    }12345678910111213

如果数组进行扩容,数组长度发生变化,而存储位置 index = h&(length-1),index也可能会发生变化,需要重新计算index,我们先来看看transfer这个方法

void transfer(Entry[] newTable, boolean rehash) {
        int newCapacity = newTable.length;
     //for循环中的代码,逐个遍历链表,重新计算索引位置,将老数组数据复制到新数组中去(数组不存储实际数据,所以仅仅是拷贝引用而已)
        for (Entry e : table) {
            while(null != e) {
                Entry next = e.next;
                if (rehash) {
                    e.hash = null == e.key ? 0 : hash(e.key);
                }
                int i = indexFor(e.hash, newCapacity);
          //将当前entry的next链指向新的索引位置,newTable[i]有可能为空,有可能也是个entry链,如果是entry链,直接在链表头部插入。
                e.next = newTable[i];
                newTable[i] = e;
                e = next;
            }
        }
    }1234567891011121314151617

这个方法将老数组中的数据逐个链表地遍历,扔到新的扩容后的数组中,我们的数组索引位置的计算是通过 对key值的hashcode进行hash扰乱运算后,再通过和 length-1进行位运算得到最终数组索引位置。

hashMap的数组长度一定保持2的次幂,比如16的二进制表示为 10000,那么length-1就是15,二进制为01111,同理扩容后的数组长度为32,二进制表示为100000,length-1为31,二进制表示为011111。从下图可以我们也能看到这样会保证低位全为1,而扩容后只有一位差异,也就是多出了最左位的1,这样在通过 h&(length-1)的时候,只要h对应的最左边的那一个差异位为0,就能保证得到的新的数组索引和老数组索引一致(大大减少了之前已经散列良好的老数组的数据位置重新调换),个人理解。
在这里插入图片描述
还有,数组长度保持2的次幂,length-1的低位都为1,会使得获得的数组索引index更加均匀,比如:
在这里插入图片描述
我们看到,上面的&运算,高位是不会对结果产生影响的(hash函数采用各种位运算可能也是为了使得低位更加散列),我们只关注低位bit,如果低位全部为1,那么对于h低位部分来说,任何一位的变化都会对结果产生影响,也就是说,要得到index=21这个存储位置,h的低位只有这一种组合。这也是数组长度设计为必须为2的次幂的原因。
在这里插入图片描述
如果不是2的次幂,也就是低位不是全为1此时,要使得index=21,h的低位部分不再具有唯一性了,哈希冲突的几率会变的更大,同时,index对应的这个bit位无论如何不会等于1了,而对应的那些数组位置也就被白白浪费了。

HashMap-get

public V get(Object key) {
     //如果key为null,则直接去table[0]处去检索即可。
        if (key == null)
            return getForNullKey();
        Entry entry = getEntry(key);
        return null == entry ? null : entry.getValue();
 }1234567

get方法通过key值返回对应value,如果key为null,直接去table[0]处检索。我们再看一下getEntry这个方法

final Entry getEntry(Object key) {
            
        if (size == 0) {
            return null;
        }
        //通过key的hashcode值计算hash值
        int hash = (key == null) ? 0 : hash(key);
        //indexFor (hash&length-1) 获取最终数组索引,然后遍历链表,通过equals方法比对找出对应记录
        for (Entry e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash && 
                ((k = e.key) == key || (key != null && key.equals(k))))
                return e;
        }
        return null;
    }123456789101112131415161718

可以看出,get方法的实现相对简单,key(hashcode)–>hash–>indexFor–>最终索引位置,找到对应位置table[i],再查看是否有链表,遍历链表,通过key的equals方法比对查找对应的记录。要注意的是,有人觉得上面在定位到数组位置之后然后遍历链表的时候,e.hash == hash这个判断没必要,仅通过equals判断就可以。其实不然,试想一下,如果传入的key对象重写了equals方法却没有重写hashCode,而恰巧此对象定位到这个数组位置,如果仅仅用equals判断可能是相等的,但其hashCode和当前对象不一致,这种情况,根据Object的hashCode的约定,不能返回当前对象,而应该返回null,后面的例子会做出进一步解释。

重写equals方法需同时重写hashCode方法

关于HashMap的源码分析就介绍到这儿了,最后我们再聊聊老生常谈的一个问题,各种资料上都会提到,“重写equals时也要同时覆盖hashcode”,我们举个小例子来看看,如果重写了equals而不重写hashcode会发生什么样的问题

/**
 * Created by chengxiao on 2016/11/15.
 */
public class MyTest {
    private static class Person{
        int idCard;
        String name;

        public Person(int idCard, String name) {
            this.idCard = idCard;
            this.name = name;
        }
        @Override
        public boolean equals(Object o) {
            if (this == o) {
                return true;
            }
            if (o == null || getClass() != o.getClass()){
                return false;
            }
            Person person = (Person) o;
            //两个对象是否等值,通过idCard来确定
            return this.idCard == person.idCard;
        }

    }
    public static void main(String []args){
        HashMap map = new HashMap();
        Person person = new Person(1234,"乔峰");
        //put到hashmap中去
        map.put(person,"天龙八部");
        //get取出,从逻辑上讲应该能输出“天龙八部”
        System.out.println("结果:"+map.get(new Person(1234,"萧峰")));
    }
}1234567891011121314151617181920212223242526272829303132333435

实际输出结果:null

如果我们已经对HashMap的原理有了一定了解,这个结果就不难理解了。尽管我们在进行get和put操作的时候,使用的key从逻辑上讲是等值的(通过equals比较是相等的),但由于没有重写hashCode方法,所以put操作时,key(hashcode1)–>hash–>indexFor–>最终索引位置 ,而通过key取出value的时候 key(hashcode1)–>hash–>indexFor–>最终索引位置,由于hashcode1不等于hashcode2,导致没有定位到一个数组位置而返回逻辑上错误的值null(也有可能碰巧定位到一个数组位置,但是也会判断其entry的hash值是否相等,上面get方法中有提到。)

所以,在重写equals的方法的时候,必须注意重写hashCode方法,同时还要保证通过equals判断相等的两个对象,调用hashCode方法要返回同样的整数值。而如果equals判断不相等的两个对象,其hashCode可以相同(只不过会发生哈希冲突,应尽量避免)。


相关问题推荐

  • 回答 156

    对于每一位才开始接触JAVA的新手来说,先不要管算法和数据结构,大多数简单的程序不需要用到算法和数据结构,所以当你真正需要时再去学习。编程一段时间以后,你就会知道在哪些地方用到他们。这时知道算法的名字并了解它们的功能,然后动手去实践。当我们在去...

  • 回答 93

    2个都很好就业,更关键的是要学得到东西

  • 回答 12
    已采纳

    获取Map集合中所有的key可以通过map集合的keySet()方法获取例如:    Map map = new HashMap();    map.put(xx,xx); //存放数据    //.... 省略    Set set = map.keySet();    //可以通过迭代器进行测试    Iterator iter = set.iter...

  • 回答 56
    已采纳

    不同年龄,不同掌握程度,学历,找工作城市,面试能力这是一个多方面影响的结果,如果是平均值的话,全国平均薪资14k左右

  • 回答 38

    具体学多久,根据自己的学习力,自律性、解决问题能力来决定若系统性学习,跟着讲师的节奏走,大概半年左右,有专业的讲师把课程进行规划,尽心系统学习,有问题,讲师会帮忙解决,学习的效率很高,避免了自学中出现各种问题解决不了,而耽误很多时间,可能会...

  • BIO与NIO、AIO的区别2020-05-19 15:59
    回答 4
    已采纳

    IO的方式通常分为几种,同步阻塞的BIO、同步非阻塞的NIO、异步非阻塞的AIO。一、BIO     在JDK1.4出来之前,我们建立网络连接的时候采用BIO模式,需要先在服务端启动一个ServerSocket,然后在客户端启动Socket来对服务端进行通信,默认情况下服务端需要...

  • 回答 23
    已采纳

    (1)idea启动时会有两个快捷方式,安装完后默认生成在桌面的是32位的idea的快捷方式,如果我们使用这个快捷方式运行大项目,一般都会很卡。解决方法是找到idea的安装目录,然后进入bin文件夹,找到名称为idea64的应用程序,右键他生成桌面快捷方式。以后每次...

  • Java方法的命名规则2021-04-06 19:07
    回答 31

    ava是一种区分字母的大小写的语言,所以我们在定义变量名的时候应该注意区分大小写的使用和一些规范,接下来我们简单的来讲讲Java语言中包、类、变量等的命名规范。(一)Package(包)的命名Package的名字应该都是由一个小写单词组成,例如com、xuetang9、compan...

  • 回答 2

    public class Point {    private int x;    private int y;    public int getX() {        return x;    }    public void setX(int x) {        this.x = x;    }    public int getY() {        return y;    } ...

  • 回答 6

    经典版单例模式public class Singleton {        private static Singleton uniqueInstance;//利用一个静态常量来记录singleton类的唯一实例。     private Singleton() {     }     public static  Singleton getInstance()...

  • 回答 3

    哈希表的长度一般是定长的,在存储数据之前我们应该知道我们存储的数据规模是多大,应该尽可能地避免频繁地让哈希表扩容。但是如果设计的太大,那么就会浪费空间,因为我们跟不用不到那么大的空间来存储我们当前的数据规模;如果设计的太小,那么就会很容易发...

  • 回答 14

    1. DOM(Document Object Model)        DOM是用与平台和语言无关的方式表示XML文档的官方W3C标准。DOM是以层次结构组织的节点或信息片断的集合。这个层次结构允许开发人员在树中寻找特定信息。分析该结构通常需要加载整个文档和构造层次结构,然后才...

  • 回答 19

    1)作用不同: throw用于程序员自行产生并抛出异常; throws用于声明在该方法内抛出了异常2) 使用的位置不同: throw位于方法体内部,可以作为单独语句使用; throws必须跟在方法参数列表的后面,不能单独使用。3)内容不同: throw抛出一个异常对象,且只能是...

  • 回答 11

    基本执行过程如下:1)程序首先执行可能发生异常的try语句块。2)如果try语句没有出现异常则执行完后跳至finally语句块执行;3)如果try语句出现异常,则中断执行并根据发生的异常类型跳至相应的catch语句块执行处理。4)catch语句块可以有多个,分别捕获不同类型...

  • 回答 20

    100-199 用于指定客户端应相应的某些动作。 200-299 用于表示请求成功。 300-399 用于已经移动的文件并且常被包含在定位头信息中指定新的地址信息。 400-499 用于指出客户端的错误。 400 语义有误,当前请求无法被服务器理解。 401 当前请求需要用户验证...

  • 回答 16

    异常表示程序运行过程中可能出现的非正常状态,运行时异常表示虚拟机的通常操作中可能遇到的异常,是一种常见运行错误,只要程序设计得没有问题通常就不会发生。受检异常跟程序运行的上下文环境有关,即使程序设计无误,仍然可能因使用的问题而引发。Java编译...

没有解决我的问题,去提问