人工智能深度学习对应的岗位需求现在饱和了吗?

2020-07-17 16:25发布

1条回答
给你三个亿
2楼 · 2020-07-21 15:13


有三个词,这两年出现的频率越来越高:人工智能(AI),机器学习(ML),深度学习(DL),到底他们哥仨是什么关系?今天小编化繁为简,用几张图带你迅速看明白。关系如图,从提出概念的时间上来看也很清楚:




人工智能AI:模拟人脑,辨认哪个是苹果,哪个是橙子。




机器学习ML:根据特征在水果摊买橙子,随着见过的橙子和其他水果越来越多,辨别橙子的能力越来越强,不会再把香蕉当橙子。


机器学习强调“学习”而不是程序本身,通过复杂的算法来分析大量的数据,识别数据中的模式,并做出一个预测--不需要特定的代码。在样本的数量不断增加的同时,自我纠正完善“学习目的”,可以从自身的错误中学习,提高识别能力。




深度学习DL:超市里有3种苹果和5种橙子,通过数据分析比对,把超市里的品种和数据建立联系,通过水果的颜色、形状、大小、成熟时间和产地等信息,分辨普通橙子和血橙,从而选择购买用户需要的橙子品种。


1、机器学习简史


哲学上的三大终极问题:是谁?从哪来?到哪去?用在任何地方都是有意义的。


——尼古拉斯·沃布吉·道格拉斯·硕德


虽然人工智能并不是最近几年才兴起的,但在它一直作为科幻元素出现在大众视野中。自从AlphaGo战胜李世石之后,人工智能突然间成了坊间谈资,仿佛人类已经造出了超越人类智慧的机器。而人工智能的核心技术机器学习及其子领域深度学习一时间成了人们的掌上明珠。面对这个从天而降的“怪物”,乐观者有之,悲观者亦有之。但追溯历史,我们会发现机器学习的技术爆发有其历史必然性,属于技术发展的必然产物。而理清机器学习的发展脉络有助于我们整体把握机器学习,或者人工智能的技术框架,有助于从“道”的层面理解这一技术领域。这一节就先从三大究极哲学问题中的后两个——从哪来、到哪去入手,整体把握机器学习,而后再从“术”的角度深入学习,解决是谁的问题。(本来想加个纵时间轴,无奈查了半天没找到方法,如果有人知道,求分享)




图一 机器学习发展史(图片来源:BriefHistoryofMachineLearning)


1.1诞生并奠定基础时期


1949,Hebb,HebbianLearningtheory


赫布于1949年基于神经心理的提出了一种学习方式,该方法被称之为赫布学习理论。大致描述为:


假设反射活动的持续性或反复性会导致细胞的持续性变化并增加其稳定性,当一个神经元A能持续或反复激发神经元B时,其中一个或两个神经元的生长或代谢过程都会变化。


Letusassumethatthepersistenceorrepetitionofareverberatoryactivity(or“trace”)tendstoinducelastingcellularchangesthataddtoitsstability.…WhenanaxonofcellAisnearenoughtoexciteacellBandrepeatedlyorpersistentlytakespartinfiringit,somegrowthprocessormetabolicchangetakesplaceinoneorbothcellssuchthatA’sefficiency,asoneofthecellsfiringB,isincreased


从人工神经元或人工神经网络角度来看,该学习理论简单地解释了循环神经网络(RNN)中结点之间的相关性关系(权重),即:当两个节点同时发生变化(无论是positive还是negative),那么节点之间有很强的正相关性(positiveweight);如果两者变化相反,那么说明有负相关性(negativeweight)。


1950,AlanTuring,TheTuringtest




图二 图灵测试(图片来源:维基百科)


1950年,阿兰·图灵创造了图灵测试来判定计算机是否智能。图灵测试认为,如果一台机器能够与人类展开对话(通过电传设备)而不能被辨别出其机器身份,那么称这台机器具有智能。这一简化使得图灵能够令人信服地说明“思考的机器”是可能的。


2014年6月8日,一个叫做尤金·古斯特曼的聊天机器人成功让人类相信它是一个13岁的男孩,成为有史以来首台通过图灵测试的计算机。这被认为是人工智能发展的一个里程碑事件。


1952,ArthurSamuel,“MachineLearning”




图三 塞缪尔(图片来源:BriefHistoryofMachineLearning)


1952,IBM科学家亚瑟·塞缪尔开发了一个跳棋程序。该程序能够通过观察当前位置,并学习一个隐含的模型,从而为后续动作提供更好的指导。塞缪尔发现,伴随着该游戏程序运行时间的增加,其可以实现越来越好的后续指导。通过这个程序,塞缪尔驳倒了普罗维登斯提出的机器无法超越人类,像人类一样写代码和学习的模式。他创造了“机器学习”这一术语,并将它定义为:


可以提供计算机能力而无需显式编程的研究领域


afieldofstudythatgivescomputertheabilitywithoutbeingexplicitlyprogrammed.


1957,Rosenblatt,Perceptron




图四 感知机线性分类器(图片来源:维基百科)


1957年,罗森·布拉特基于神经感知科学背景提出了第二模型,非常的类似于今天的机器学习模型。这在当时是一个非常令人兴奋的发现,它比赫布的想法更适用。基于这个模型罗森·布拉特设计出了第一个计算机神经网络——感知机(theperceptron),它模拟了人脑的运作方式。罗森·布拉特对感知机的定义如下:


感知机旨在说明一般智能系统的一些基本属性,它不会因为个别特例或通常不知道的东西所束缚住,也不会因为那些个别生物有机体的情况而陷入混乱。


Theperceptronisdesignedtoillustratesomeofthefundamentalpropertiesofintelligentsystemsingeneral,withoutbecomingtoodeeplyenmeshedinthespecial,andfrequentlyunknown,conditionswhichholdforparticularbiologicalorganisms.


3年后,维德罗首次使用Delta学习规则(即最小二乘法)用于感知器的训练步骤,创造了一个良好的线性分类器。


1967年,Thenearestneighboralgorithm




图五 kNN算法(图片来源:维基百科)


1967年,最近邻算法(Thenearestneighboralgorithm)出现,使计算机可以进行简单的模式识别。kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。这就是所谓的“少数听从多数”原则。


1969,Minsky,XORproblem










图六 XOR问题,数据线性不可分


1969年马文·明斯基提出了著名的XOR问题,指出感知机在线性不可分的数据分布上是失效的。此后神经网络的研究者进入了寒冬,直到1980年才再一次复苏。


1.2停滞不前的瓶颈时期


从60年代中到70年代末,机器学习的发展步伐几乎处于停滞状态。无论是理论研究还是计算机硬件限制,使得整个人工智能领域的发展都遇到了很大的瓶颈。虽然这个时期温斯顿(Winston)的结构学习系统和海斯·罗思(HayesRoth)等的基于逻辑的归纳学习系统取得较大的进展,但只能学习单一概念,而且未能投入实际应用。而神经网络学习机因理论缺陷也未能达到预期效果而转入低潮。


1.3希望之光重新点亮


1981,Werbos,Multi-LayerPerceptron(MLP)




图七多层感知机(或者人工神经网络)


伟博斯在1981年的神经网络反向传播(BP)算法中具体提出多层感知机模型。虽然BP算法早在1970年就已经以“自动微分的反向模型(reversemodeofautomaticdifferentiation)”为名提出来了,但直到此时才真正发挥效用,并且直到今天BP算法仍然是神经网络架构的关键因素。有了这些新思想,神经网络的研究又加快了。


在1985-1986年,神经网络研究人员(鲁梅尔哈特,辛顿,威廉姆斯-赫,尼尔森)相继提出了使用BP算法训练的多参数线性规划(MLP)的理念,成为后来深度学习的基石。


1986,Quinlan,DecisionTrees




图八决策树(图片来源:维基百科)


在另一个谱系中,昆兰于1986年提出了一种非常出名的机器学习算法,我们称之为“决策树”,更具体的说是ID3算法。这是另一个主流机器学习算法的突破点。此外ID3算法也被发布成为了一款软件,它能以简单的规划和明确的推论找到更多的现实案例,而这一点正好和神经网络黑箱模型相反。


决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。数据挖掘中决策树是一种经常要用到的技术,可以用于分析数据,同样也可以用来作预测。


在ID3算法提出来以后,研究社区已经探索了许多不同的选择或改进(如ID4、回归树、CART算法等),这些算法仍然活跃在机器学习领域中。


1.4现代机器学习的成型时期


1990,Schapire,Boosting




图九Boosting算法(图片来源:百度百科)


1990年,Schapire最先构造出一种多项式级的算法,这就是最初的Boosting算法。一年后,Freund提出了一种效率更高的Boosting算法。但是,这两种算法存在共同的实践上的缺陷,那就是都要求事先知道弱学习算法学习正确的下限。


1995年,Freund和schapire改进了Boosting算法,提出了AdaBoost(AdaptiveBoosting)算法,该算法效率和Freund于1991年提出的Boosting算法几乎相同,但不需要任何关于弱学习器的先验知识,因而更容易应用到实际问题当中。


Boosting方法是一种用来提高弱分类算法准确度的方法,这种方法通过构造一个预测函数系列,然后以一定的方式将他们组合成一个预测函数。他是一种框架算法,主要是通过对样本集的操作获得样本子集,然后用弱分类算法在样本子集上训练生成一系列的基分类器。


1995,VapnikandCortes,SupportVectorMachines(SVM)




图十支持向量机(图片来源:维基百科)


支持向量机的出现是机器学习领域的另一大重要突破,该算法具有非常强大的理论地位和实证结果。那一段时间机器学习研究也分为NN和SVM两派。然而,在2000年左右提出了带核函数的支持向量机后。SVM在许多以前由NN占据的任务中获得了更好的效果。此外,SVM相对于NN还能利用所有关于凸优化、泛化边际理论和核函数的深厚知识。因此SVM可以从不同的学科中大力推动理论和实践的改进。


而神经网络遭受到又一个质疑,通过Hochreiter等人1991年和Hochreiter等人在2001年的研究表明在应用BP算法学习时,NN神经元饱和后会出现梯度损失(gradientloss)的情况。简单地说,在一定数量的epochs训练后,NN会产生过拟合现象,因此这一时期NN与SVM相比处于劣势。


2001,Breiman,RandomForests(RF)


决策树模型由布雷曼博士在2001年提出,它是通过集成学习的思想将多棵树集成的一种算法,它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习(EnsembleLearning)方法。随机森林的名称中有两个关键词,一个是“随机”,一个就是“森林”。“森林”我们很好理解,一棵叫做树,那么成百上千棵就可以叫做森林了,这样的比喻还是很贴切的,其实这也是随机森林的主要思想—集成思想的体现。


其实从直观角度来解释,每棵决策树都是一个分类器(假设现在针对的是分类问题),那么对于一个输入样本,N棵树会有N个分类结果。而随机森林集成了所有的分类投票结果,将投票次数最多的类别指定为最终的输出,这就是一种最简单的Bagging思想。


1.5爆发时期


2006,Hinton,DeepLearning


在机器学习发展分为两个部分,浅层学习(ShallowLearning)和深度学习(DeepLearning)。浅层学习起源上世纪20年代人工神经网络的反向传播算法的发明,使得基于统计的机器学习算法大行其道,虽然这时候的人工神经网络算法也被称为多层感知机,但由于多层网络训练困难,通常都是只有一层隐含层的浅层模型。


神经网络研究领域领军者Hinton在2006年提出了神经网络DeepLearning算法,使神经网络的能力大大提高,向支持向量机发出挑战。2006年,机器学习领域的泰斗Hinton和他的学生Salakhutdinov在顶尖学术刊物《Scince》上发表了一篇文章,开启了深度学习在学术界和工业界的浪潮。


这篇文章有两个主要的讯息:1)很多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻划,从而有利于可视化或分类;2)深度神经网络在训练上的难度,可以通过“逐层初始化”(layer-wisepre-training)来有效克服,在这篇文章中,逐层初始化是通过无监督学习实现的。


2015年,为纪念人工智能概念提出60周年,LeCun、Bengio和Hinton推出了深度学习的联合综述。


深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示。这些方法在许多方面都带来了显著的改善,包括最先进的语音识别、视觉对象识别、对象检测和许多其它领域,例如药物发现和基因组学等。深度学习能够发现大数据中的复杂结构。它是利用BP算法来完成这个发现过程的。BP算法能够指导机器如何从前一层获取误差而改变本层的内部参数,这些内部参数可以用于计算表示。深度卷积网络在处理图像、视频、语音和音频方面带来了突破,而递归网络在处理序列数据,比如文本和语音方面表现出了闪亮的一面。


当前统计学习领域最热门方法主要有deeplearning和SVM(supportvectormachine),它们是统计学习的代表方法。可以认为神经网络与支持向量机都源自于感知机。


神经网络与支持向量机一直处于“竞争”关系。SVM应用核函数的展开定理,无需知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复杂性,而且在某种程度上避免了“维数灾难”。而早先的神经网络算法比较容易过训练,大量的经验参数需要设置;训练速度比较慢,在层次比较少(小于等于3)的情况下效果并不比其它方法更优。


神经网络模型貌似能够实现更加艰难的任务,如目标识别、语音识别、自然语言处理等。但是,应该注意的是,这绝对不意味着其他机器学习方法的终结。尽管深度学习的成功案例迅速增长,但是对这些模型的训练成本是相当高的,调整外部参数也是很麻烦。同时,SVM的简单性促使其仍然最为广泛使用的机器学习方式。


1.6启示与未来的发展


人工智能机器学习是诞生于20世纪中叶的一门年轻的学科,它对人类的生产、生活方式产生了重大的影响,也引发了激烈的哲学争论。但总的来说,机器学习的发展与其他一般事物的发展并无太大区别,同样可以用哲学的发展的眼光来看待。


机器学习的发展并不是一帆风顺的,也经历了螺旋式上升的过程,成就与坎坷并存。其中大量的研究学者的成果才有了今天人工智能的空前繁荣,是量变到质变的过程,也是内因和外因的共同结果。


机器学习的发展诠释了多学科交叉的重要性和必要性。然而这种交叉不是简单地彼此知道几个名词或概念就可以的,是需要真正的融会贯通:


统计学家弗莱德曼早期从事物理学研究,他是优化算法大师,而且他的编程能力同样令人赞叹;


乔丹教授既是一流的计算机学家,又是一流的统计学家,而他的博士专业为心理学,他能够承担起建立统计机器学习的重任;


辛顿教授是世界最著名的认知心理学家和计算机科学家。虽然他很早就成就斐然,在学术界声名鹊起,但他依然始终活跃在一线,自己写代码。他提出的许多想法简单、可行又非常有效,被称为伟大的思想家。正是由于他的睿智和身体力行,深度学习技术迎来了革命性的突破。



深度学习的成功不是源自脑科学或认知科学的进展,而是因为大数据的驱动和计算能力的极大提升。可以说机器学习是由学术界、工业界、创业界(或竞赛界)等合力造就的。学术界是引擎,工业界是驱动,创业界是活力和未来。学术界和工业界应该有各自的职责和分工。学术界的职责在于建立和发展机器学习学科,培养机器学习领域的专门人才;而大项目、大工程更应该由市场来驱动,由工业界来实施和完成。




END




碧茂课堂精彩课程推荐:


  1. Cloudera数据分析课;

2.Spark和Hadoop开发员培训;


3.大数据机器学习之推荐系统;


4.Python数据分析与机器学习实战;




详情请关注我们公众号:碧茂大数据-课程产品-碧茂课堂


现在注册互动得海量学币,大量精品课程免费送!


相关问题推荐

  • 回答 20

    选对培训机构比较重要,还有就是选择的时候看一下自己适合哪种风格的讲课方式,这个也很重要。因为现在5G时代来临,人工智能绝对是一个发展的大趋势,如果你自己空余时间又比较多的话,其实可以报一个辅导班,学习学习一些基本的东西,毕竟多学点总是没有坏处...

  • 回答 3

    深度学习是近几年人工智能领域的主要研究方向。深度学习的主要任务是通过构建深度卷积神经网络(Deep Neural Network,DNN)和采用大量样本数据作为输入,人们最终会得到一个具有强大分析能力和识别能力的模型,该模型包含了DNN的构成参数以应用于实际工作。...

  • 回答 3

    AI深度学习课程是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术,主要应用于图像识别、语音识别、自然语言处理等领域。学完可以从事深度学习工程师、机器学习工程师、人工智能工程师、高级算法工程师、高级算法工...

  • 回答 16

    算法,数据相关的适合做人工智能

  • 回答 28

    人工智能取代的行业,一定有如下几个特征:1、大量重复型。2、逻辑性比较强。3、数据库依赖型。像司机,咨询,教育,医生,会计,律师助理,工程师,码农等,都是容易被取代的行业。当然,这都是强人工智能以后会发生的事,现在还是弱人工智能的时代,想进入...

  • 回答 9

    如果你是自己学着玩,提升自己的话,高中毕业都可以。如果是冲着AI算法岗或者科研一席之地,至少211硕士。具体可以亲身体验一下今年算法岗秋招。

  • 回答 9

    可以,未来的人工智能发展深度学习必然是现在大型机器生产科研必备的,证书的话某个培训好像有这个中科院的证书,具体你去百度吧

  • 回答 8

    我觉得就是人工智能的课程,现在家具都是智能家居了。这一块发展一定很好

  • 回答 3

    对于sgd算法而言,batch size太大太小都不好,太小的话训练不稳定,计算效率低;太大的话收敛速度慢,需要仔细调节一下。以2的倍数调节,例如32,64,128等

  • 回答 1

    在terminal中输入$wolf@wolf:~/Downloads/gitclonehttps://github.com/Tencent/ncnn cd切换到NCNN目录***这步很重要,这时候需要修改ncnn的root目录下的CMakeLists.txt文件,需要将倒数几行的add_subdirectory(examples),取消注释,这样就是默认编译example...

  • 回答 5

    人工智能的话其实到现在来说已经慢慢趋于成熟,学的话首先是一线城市,学出来好就业,还有就是薪资也高

  • 回答 3

    画个train and test error VS 训练数据量(training set size) 的learningcurve应该会更加直观了。可以找个简单的数据集,比如说handwritten digits或者什么的,分别用神经网络和决策树或者knn做出这个learningcurve。你会看到如果用一个决策树去解决这个问题...

  • 回答 2

    共生矩阵用两个位置的象素的联合概率密度来定义,它不仅反映亮度的分布特性,也反映具有同样亮度或接近亮度的象素之间的位置分布特性,是有关图象亮度变化的二阶统计特征。它是定义一组纹理特征的基础。     一幅图象的灰度共生矩阵能反映出图象灰度关于...

没有解决我的问题,去提问